
JOURNAL OF APPROXIMATION THEORY 55, 1-11 (1988)

Convex LP Approximation

G. A. WATSON

Department of Mathematics and Computer Science,
University of Dundee, Dundee DDl 4HN, Scotland, U.K.

Communicated by E. W. Cheney

Received December 31, 1985; revised August 10, 1986

1. INTRODUCTION

The problem of approximating 0 by elements of a compact nonempty
convex subset K which is contained in a finite-dimensional subspace and
which does not contain 0 was recently considered by Chalmers, Egger, and
Taylor [4]. The study of this problem (which clearly subsumes a more
general approximation problem) was motivated by earlier work of
Karlovitz [9], who developed an iterative method based on the solution of
a sequence of weighted L 2 problems for finding best LP approximations
from certain finite dimensional subspaces for p an even integer. It was
shown in [4] that for the problem considered there, Karlovitz' algorithm
was convergent for 2 ~ p < 00; it was also remarked there that convergence
occurred for 1 < P < 2 under an additional assumption.

An essential ingredient of the algorithm studied in both papers is a line
search procedure. In an analogous algorithm for the L 00 problem, Bani and
Chalmers [2] showed that with an additional Haar condition assumption,
convergence is possible without this subproblem. It is the purpose of this
paper to point out that for the cases I < p < 2, under conditions which per
mit convergence of the Karlovitz algorithm, the line search is also
unnecessary. Under similar conditions, it is also shown that the simpler
algorithm is locally convergent for the special case when K is defined by a
finite number of linear constraints and 2 < p < 3. Closely related results are
available for analogous methods applied to (mainly finite) unconstrained
LP approximation problems (see, for example, [3, 5, 7, 8, 10, 11]).

In so far as it is appropriate, the notation of this paper follows that
of [4]. Let (T, E, fJ) be a finite positive measure space, and define
LP == LP(T, E, fJ) to be the Banach space of all fJ-equivalence classes of
p-summable real-valued functions defined on T. Let L 00 == L oo(T, E, fJ) be
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the Banach space of real-valued measurable essentially bounded functions
defined on T. Then for 1 E U, the norm 1IIIIp may be defined as usual by

l~p<oo

1111100 = inf sup II(x)l·
SE 1:,I'(S) = 0 x E T\S

Let K be a compact convex subset of LP satisfying

O¢K,

dim(span(K)) < 00,

j.l(supp(h 1) n supp(h2)) # 0 for each pair of nonzero elements

h2 E span(K),

and

each h E K is also in L 00 .

Assume now that 1 < P < 00. Then because the LP norm is strictly convex
on any convex subset of LP, the best LP approximation from K to 0, say
g*, is unique. The algorithm for finding g* which is analysed here consists
of the following iteration:

given g n E K define g n + 1 E K as the solution to the problem

min W(gn, g)
gEK

where

Because

(1.1 )

(1.2)

the problem (1.1) is well-defined for 1 < P < 00. When p < 2, W(gn, g) may
not be finite. However, the set

X={gEU; W(gn,g)<oo}
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is a linear subspace of LP and on that subspace W(gn' g)1/2 is a weighted
least squares norm. Then the ball

{gELP: W(gn, g)1/2~min W(gn' g)1/2}
gEK

is strictly convex and meets K at a unique point. In addition it follows from
the definition that W(gn, g) is Gateaux differentiable on X.

The following characterization of g* is well known.

THEOREM 1. g* E K is the best LP approximation to 0 if and only if

f Ig*IP-lsign(g*)(g*-g)dli~O,
T

for all gE K. (1.3)

2. CONVERGENCE PROPERTIES

It is first shown that if 1< p < 2, then the algorithm (1.1) is a descent
process from any initial approximation go E K.

THEOREM 2. Let 1 <p<2 and let {gn} be defined by (1.1) with go EK
arbitrary. Then

with equality only ifgn+l =gn.

Proof For any real a, b with b =f 0, it is straightforward to show that if
1<p~2,

For any n, let

Ign+ l(X)jP ~ Ign(x)jP +! P Ign(x)IP-2 (gn+ 1(X)2 - gn(x)2).

It follows that

f Ign+l(X)jP dli~ Ilgnll~+! p f Ign1P~2 g~+l dli-! p Ilgnll~
ry~ ry~

~lIgnll~using(1.2). (2.1)
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Because

we must have

so (2.1) gives
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II g n + 1 II ~ ~ II g n II ~

with equality only if gn = gn + I> by uniqueness. I
The question remains as to whether points of termination of the

algorithm, or any of the limit points of the (bounded and finite dimen
sional) sequence {gn}, solve (1.1). That the answer to this is generally in
the negative is shown by the following example.

EXAMPLE. Let (T, E, J1.) = [0, 1] with Lebesgue measure, let p =~, and
let

K= {c-x2
, CE [0, I]}.

If the algorithm (1.1) is used with go = _x2
, then

which is minimized by g = go (the only element of K which makes
W( go, g) < (0). However go does not satisfy (1.3).

It follows that to establish a useful convergence result it is necessary to
impose conditions on the sequence {gn}, and a crucial requirement is that
W(gn,g) be Gateaux differentiable with continuous derivative at gn+!'
when gn+ 1 is characterized by

for all gEK (2.2)

(for example, Ekeland and Temam [6] p.37). A sufficient condition for
this is that

0<1X<1, (2.3 )
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which is just the condition for convergence of the original Karlovitz
algorithm in this case. (For example, in the context of CEO, I], (2.3) is
satisfied if each gn has a finite number of simple zeros in [0, 1] (see
Chalmers, Egger, and Taylor [4], Bani [1]).)

THEOREM 3. Let 1 < P < 2, let {gn} be defined by (1.1), and let (2.3) be
satisfied for all n. Then either the algorithm terminates at g* or

gn -+ g* as n -+ 00.

Proof If gn = gn+ l' it follows from (2.2) that gn satisfies (1.3), so that
gn = g*.

Let F(g) = Ilgll p • Then {F(gn)} is a decreasing sequence, bounded below,
and so convergent to F*, say. Further {gn} is bounded and finite dimen
sional and so has limit points. Let

as j -+ 00

and (going to a subsequence if necessary, which is not renamed)

as j -+ 00.

By continuity of F,

F(v) = F(w) = F*.

Now by definition of gH l' (2.2) gives
J

LIgijlP-2 gij+ .(gi;+ 1 - g) dp. ~O,

for all g E K, j = 1, 2, ....

Let j -+ 00. Then by continuity of the Gateaux derivative

for all gE K,

and so v = w, otherwise F(w) < F(v), a contradiction. It follows from
Theorem 1 that v = g*, and since this is true for all limit points, the
theorem is proved. I

The above results hinge on the inequality (2.1), and if p > 2, this is rever
sed. In order to say something about the algorithm when p> 2, it seems
necessary to be more specific about the set K, and in what follows it will be
assumed that K is defined by a finite number of linear constraints. Let V be
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(2.4 )

an r-dimensional subspace of LP(T, 1:, Jl) and let {VI' V2' ... , vr } be a basis
for V. Then the problem to be considered may be written as

find CER
r

to minimize fTlitl CiVi!P dJl

i = 1, 2, ..., S

i = s + 1, ..., t,
(2.5)

where b i E R, ai ERr, i = 1, 2, ..., t are given, and s ~ r.
Assume first that s = t so that only equality constraints are present and

let these be written

ATc = b, (2.6)

(2.7)

where A is an r x s matrix. If A has rank s, then without loss of generality it
may be expressed as

where B is an s x s nonsingular matrix. It follows that the first s com
ponents of C may be eliminated using (2.6) and the minimization problem
reduced to an equivalent unconstrained problem in Rm

, where m = r - s.
This problem may be written

find Y E R
m

to minimize II i~1 YiWi - III:-
where

s

Wi =V i + s - I Mijvj ,

j~1

s

1= I djvj,
j=1

i= 1, 2, ..., m,

with M ij the (i, j) component of M = CB- I and dj the jth component of
d = - B - Tb. Similarly the problem (1.1) solved by gn + I is equivalent to

find ZERm to minimize LIgn IP-2(~I ZiWi - I YdJl. (2.8)

The solution of (2.8) satisfies a nonsingular system of linear equations, say

F(y, z) = 0, (2.9)



CONVEX LP APPROXIMAnON 7

if r:t.<1.

where gn = L7'= 1 y; W; - f This may be regarded as a simple iteration
function, and provided that F is a continuously differentiable function of y
in the neighbourhood of a fixed point, a standard local convergence
analysis may be performed. There is no difficulty when p> 3; however,
when 2 < p :::; 3 it is necessary to impose some conditions and the following
lemma is required. Let g = g(y) = L7'= 1 y;W; - f, g* = g(y*).

LEMMA 1. Let 0 < r:t.:::; 1, and for all y in an open neighbourhood N(y*)
of y*, let

ll(x:g=O)=O

t Igl~-1 dll < 00,

Then Sr Igl ~ dll is a differentiable function of y for all y E N(y*).

Proof Let y E N( y*) and define

( )
II~

p(y, T) = t Igl~ dll ,

Z=Z(e)= {XE T: Igl :::;e}.

Let d, II d II = 1, be arbitrary and let

M=max If diw;l·
xeT ;= 1

Then for e> 0, 0 < Y :::; ejM,

m

P(y + yd, T - Z) = P(y, T - Z) +Y L d;G;(y, T - Z) + O(y2),
i=1

where

Thus

i= 1, 2, ..., m.

m

P(y+yd, T)-P(y, T)=y L d;G;(y, T-Z)
;=1

(2.10)

+ P(y + yd, Z) - P(y, Z) + O(y2). (2.11)
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Now

so that

It follows that
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t Ig(y + y dW dJl ~ (e + yMy" Jl(Z)

P(y + y d, Z) ~ (e + yM) Jl(Z)I/~.

IP(y + y d, ~) - P(y, T) - ;tl d;G;(y, T - Z)!

~ (~e + M) Jl(Z)I/~ + O(y). (2.12)

Now choose e = yM and let e -+ 0 in (2.12). By continuity Jl(Z) -+ O.
Therefore P(y, T) is differentiable at y and the result follows. I

The rather stronger result of continuous differentiability in N(y*) is in
fact necessary and it is not clear that this holds without additional
assumptions. However, in the context of CEO, 1], if g* has a finite number
of simple zeros in [0, 1], then the conditions of the lemma are satisfied and
also Jb Igl~-I sign (g) dx is continuous at g* for 0 < 0( < 1.

THEOREM 4. Let p > 2 and let the algorithm (1.1) be applied to (2.4) sub
ject to (2.6) with A an s x r matrix with full rank s. Then if the conditions of
Lemma 1 are satisfied, and in addition Jr IgIP-3 sign(g) dJl is continuous at
g*, the algorithm is locally convergent to g* if p < 3.

Proof Since the problem is equivalent to (2.7) it is only necessary to
establish the result for the sequence generated by (2.8). Let y be the current
approximation to the solution of (2.7) with g = L~ I y;W; - f Define
h = L'('~ I Z;W; - fwhere Z solves (2.8) with gn = g, so that

or

i= 1, 2, ..., m, (2.13)

Now for any i, j, 1~ i, j ~ m,

F(y, z) = 0, say. (2.14)
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using Lemma 1. If g = h( y = z) then

9

of; _ ( 2) of;- p- -oYj - oz/ i, j= 1,2, ..., m.

Thus at a fixed point of the iteration function, the Jacobian matrix of z
regarded as a function of Y is given by

J=(2-p)/

and the result of the theorem follows. I
Now return to the more general problem (2.4), (2.5) and let c* be the

solution with g* = L~= I c;*v;. Let .xI* denote the active set of indices such
that

iE.xI*.

Then standard Kuhn-Tucker theory gives the existence of Lagrange mul
tipliers A;*, i E .xI*, such that

¢J(g*, g*) - L A;*a; = 0,
iEd·

(2.15)

where ¢J(g, h) ERr has the ith component h IgIP-2 hv; dp., i= 1, 2, ..., r, and
A;* ~ 0 if i ~ s + 1.

THEOREM 5. Let p > 2 and let the algorithm (1.1) be applied to the
problem (2.4), (2.5), whose solution is characterized by (2.15). Let the con
ditions of Lemma 1 be satisfied and let JT Ig IP - 3 sign(g) dp. be continuous at
g*. Then if

(i) {a;, i E.xI*} is a linearly independent set,

(ii) A;*#O, iE.xI*,

the algorithm is locally convergent to g* if p < 3.

Proof Write (2.15) as

¢J* -AA.* =0,

where A is assumed to be an r x k matrix. Then if (i) holds, A* is uniquely
defined by the expression

(2.16)

where the superscript + denotes the usual generalized inverse. If (ii) holds,
a small perturbation of ¢J* will not zero any component A;*, iE.xI*.
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Now consider the problem

find dE R r to minimize Sr Igl p- 2 (L~~ 1 d;vY dJ1.

subject to AT d = b, (2.17)

where g = L~~ 1 c; v,.. Then a feasible dE Rr solves the problem if and only if
there exists A. E R k such that

¢J(g, h) - AA. =0,

where h = L~~ I d,.v,., and from (2.16)

A. - A. * = A + (¢J(g, h) - ¢J*). (2.18)

Without loss of generality, it may be assumed that the first k columns of A
form a nonsingular matrix, and so the problem (2.17) can be replaced by
an unconstrained (weighted least squares) problem in R' - k just as before,
for which an explicit solution may be obtained. It follows that d solving
(2.17) may be written explicitly as a function of c and a continuous depen
dence may be established. Thus if II g - g* II is small enough, II h - g* II will
also be small enough so that d solving (2.17) will also solve the problem
with constraint set given by (2.5), for (2.18) shows that the active set must
be given by .91*. Therefore, locally the situation reduces to that considered
in Theorem 3 and the result follows. I
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